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Part 1: Replication

We begin by replicating the separation plots from Muchlinski et al. (2016) using
their updated replication materials (Fig. 1). Our separation plots for the logistic
regression models by Fearon and Laitin (2003), Collier and Hoeffler (2004),
and Hegre and Sambanis (2006) are identical to those from Muchlinski et al.’s
original paper, but notably, our separation plot for random forests identifies
2 false positives while that from Muchlinski et al.’s original paper does not
identify any. These results align with those produced by Mulchinski et al. in
their own replication (Muchlinski, 2019). Our findings refute Muchlinski et al.’s
initial assertion that random forests is uniquely impervious to Type II errors
compared to logistic regression.

We continue by replicating the ROC curves from Muchlinski et al. (2016)
(Fig. 2). Like Muchlinski et al. (2016), we find the random forest model has an
AUC of .91, but as explained by Wang (2019), the ROC curve in Muchlinksi
et al.’s original paper implies an AUC of .97. Our redrawing of the ROC curve
to be consistent with an AUC of .91 aligns with Muchlinski et al.’s replication
(Muchlinski, 2019). In contrast, our ROC curves for logistic regression and
penalized logistic regression do not change very much compared to Muchlinski
et al. (2016). However, we note that Muchlinski et al. do not provide updated
calculations of AUC in their replication (Muchlinski, 2019). We therefore recal-
culate AUC for all models and find those for uncorrected and penalized logistic
regression to be slightly higher than those shown in Muchlinski et al.’s original
paper. These results demonstrate that the gap in performance between random
forests and logistic regression is substantially smaller than they report.

As suggested by Neunhoeffer and Sternberg (2019), the out-of-sample anal-
ysis reported by Muchlinski et al. (2016) does not match that from the article’s
original replication materials (Muchlinski, 2015). In replicating the analysis
from Muchlinski et al.’s updated materials (Muchlinski, 2019), using a thresh-
old for positive prediction of 0.5, we find that the logistic regression models all
fail to predict any civil war, as they originally reported (Table 1). However,



random forests performs slightly better, correctly predicting 10 rather than 9
out of 20 civil wars. Such a small difference however is not of import, especially
because of the randomness inherent in both the imputation and random forests
procedures used (Muchlinski et al., 2019).
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Figure 1: Separation plot for all classifiers.
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Figure 2: ROC curves for

Penalized Logits and Random Forests (Corrected)
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Fearon and Laitin (2003) 0.79

Collier and Hoeffler (2004) 0.80
Hegre and Sambanis (2006) 0.83

Random Forest 0.91
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Table 1: Predicted probability of civil war onset: Logistic Regression and Ran-

dom Forests

Models and predicted probability of civil war onset

Country Year Fearon and Latin (2003) Collier and Hoeffler (2004) Hegre and Sambanis (2006) Random Forest
Afghanistan 2001 0.01 0.00 0.00 0.06
Angola 2001 0.01 0.01 0.02 0.71
Burundi 2001 0.03 0.00 0.02 0.09
Guinea 2001 0.01 0.00 0.01 0.07
Rwanda 2001 0.01 0.00 0.01 0.05
Uganda 0.02 0.02 0.02 0.93
Liberia 0.02 0.04 0.03 0.98
Iraq 0.03 0.01 0.03 0.16
Uganda 0.01 0.00 0.01 0.45
Afghanistan 0.03 0.00 0.02 0.14
Chad 0.02 0.04 0.03 0.98
Somalia 0.06 0.04 0.10 0.96
Rwanda 0.02 0.04 0.03 0.99
Libya 0.02 0.04 0.02 0.95
Syria 2012 0.01 0.00 0.00 0.06
Syria 2012 0.01 0.00 0.00 0.06
Democratic Republic of the Congo 2013 0.01 0.00 0.00 0.04
Iraq 2013 0.02 0.04 0.02 0.96
Nigeria 2013 0.02 0.04 0.03 0.96
Somalia 2014 0.05 0.04 0.11 0.99
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Finally, although Mulchinski et al. do not provide the code to do so in
their replication materials, we attempt to replicate the F1l-score plot from their
original paper 2016 (Fig. 3). Our results differ significantly from those they
report; we successfully identify few true positives and thus frequently obtain
precision and recall of 0, yielding an undefined F1-score, or otherwise low pre-
cision and recall, yielding significantly lower mean F1-scores for every method
and training set ratio. In contrast to Muchlinski et al. (2016), we find that
the random forest model does not perform better than either logistic regression
method. The mean F1-scores of random forests are similar to logistic regression
when the training set ratio is small, and only slightly higher when the training
set ratio is 0.8. However any potential advantage is canceled out by random
forests’ high standard deviation. Our replication results in full indicate that
while random forests may be superior to logistic regression in predicting civil
war onset by some measures, its advantage is undoubtedly smaller than was
initially suggested by Muchlinski et al. (2016).
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Figure 3: Comparison of F1 Score with varying training set ratio.

https://www.overleaf.com/project/5{8607556236730001cad7bd
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Part 2: Extension

Introduction

A central issue in the methodology proposed by Muchlinski et al. to evaluate
civil war onset prediction is the assumption that the onset of a civil war is a
binary variable, such that civil war either broke out or did not break out in
a given year. However, real-life civil wars are rarely so discrete: skirmishes
and widespread civil violence often precede the onset of war, and intrastate
conflicts may not qualify as civil war depending on the subjective criteria used.
We questioned whether the results that Muchlinski et al. obtained might be
dependent on their arbitrary cutoff for civil war.

A related question is whether Muchlinski et al.’s results hold when fully
taking autocorrelation and lag into account, using violence or other predictors
in previous years to predict violence in the current year. This corresponds more
closely to real-world applications in which data about the history of a given
country is already available.

Finally, we observe that much of the presumed utility of predicting the out-
break of civil wars comes from the possibility of saving lives. If our goal is not
to predict war itself but rather to identify areas that will experience high casu-
alties from civil war, then predicting the number of deaths related to intrastate
violence seems a more direct measure of a quantity of interest.

To investigate these possibilities, we examined whether continuous prediction
of the degree of intrastate violence given data from the previous year(s) would
affect the relative predictive power of random forests and regression models.
Furthermore, we convert the binary classification task into a time series forecast
task, in which we predict a continuous variable: the number of deaths per capita
from intrastate violence in a given country in each year. We trained a random
forest and a linear regression model! to examine their ability to predict the
degree of violence.

We also examined whether methods improving on traditional random forests
improve classifier results. Discrepancies between the performance of different
tree-based models could suggest that arguments about the relative merits of
families of classifiers are highly dependent on the specific models used. We
compared the performance of the random forest and linear regression models to
LightGBM, a faster variant of gradient boosting decision trees (Ke et al., 2017).

Methods

The Uppsala Conflict Data Program (UCDP) measures the number of deaths
per country due to several types of conflict. We used the number of deaths per
country due to intrastate violence, which the UCDP defines as violence between
a government and rebel troops without the involvement of foreign governments
with troops, and internationalized intrastate violence, which the UCDP defines

1Because this task predicts a continuous outcome (deaths per capita), we use a linear
regression model rather than the logistic regression model used by Muchlinski et al.



as violence between a government and rebel troops with some involvement of
foreign governments with troops. Note that a necessary limitation of the UCDP
data is that the year coverage (1989 to 2000) is significantly smaller than that of
the original dataset. In order to convert this into a per-capita measure, we then
used United Nations population data (DESA, 2019). We excluded deaths due
to extrasystemic violence (between a state and a non-state outside its territory)
and interstate violence as inapplicable to civil war.

For each year from 1992 to 2000, the validation set was the prediction for
that year and the training set consisted of the data from all previous years. All
models used the same training features that Muchlinski et al. used and the
number of deaths per capita in the previous year. As a baseline, we used a
model that simply predicted the same number of deaths as the previous year in
all cases. We evaluate each model by averaging its mean performance across all
years used for the validation set, where performance is measured by root mean
squared logarithmic error (RMSLE). RMSLE is an approximation for relative
error from the true value of per capita deaths in each year.

We train each model (random forest, linear regression, and Light Gradient-
Boosted Machine) using several different variants of the feature/target variable.
We vary the predictor set by the number of years of lagged outcomes (1 vs. 2)
and whether we include the full set of predictor variables used by Muchlinski et
al.

Our code is available at github.com/jordan-klein/muchlinksi_replication.

Results

Surprisingly, we found that predictions using the previous two or three years
performed worse or on par with simply using the previous year alone. We also
find that for random forest and linear regression models, the inclusion of the
full set of Muchlinski’s predictor variables offers no improvement in RMSLE. We
report the RMSLE of the best model of each type (linear regression, random
forest, and LGM) on the validation set in Table 2. The Light GBM model had
the lowest error rate (0.00072), followed by the linear regression model (0.00074)
and then the random forest (0.000087). Interestingly, all models experienced a
spike in RMSLE in 1997.



Table 2: Root mean squared log error of casualty prediction on the validation

set.
RMSLE of casualty prediction
Year  Baseline Random Forest LightGBM Linear Regression
1992 0.00009 0.000044 0.000035 0.000048
1993 0.00007 0.000083 0.000062 0.000072
1994 0.00008 0.000076 0.000058 0.000045
1995 0.00005 0.000051 0.000049 0.000036
1996 0.00005 0.000045 0.000041 0.000039
1997 0.00027 0.000273 0.000272 0.000273
1998 0.00019 0.000114 0.000070 0.000077
1999 0.00008 0.000063 0.000041 0.000049
2000 0.00003 0.000032 0.000022 0.000025
Mean 0.00010 0.000087 0.000072 0.000074
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Figure 4: RMSLE of casualty predictions.

These results contrast with Muchlinski et al. (2016), who found that random
forests outperformed several types of logistic regression. In fact, the random for-
est model had the highest or tied for the highest error in eight of the nine years
examined (Fig. 4). This discrepancy suggests that Muchlinski et al.’s results
hinge on the structure of the problem: the binary variable they predict, the
metrics used to evaluate binary classification, and the disregard of autocorre-
lation. When predicting a continuous variable and taking autocorrelation into



account, random forests no longer outperform regression models. In addition,
the fact that gradient boosted trees outperformed the other models suggests
that broad conclusions about tree-based methods are dependent on the exact
model used in a given scenario.

Ultimately, the differences between Muchlinski et al.’s results and ours un-
derscore the notion that sweeping conclusions about the relative merits of dif-
ferent classifiers rely heavily on the presentation of the problem, particularly
the features used by the models and how predicted classes are defined. For phe-
nomena like civil wars, which unfold over time, fit poorly into binary categories,
and can be measured with rich, continuous data sources, random forests may
indeed not be the best method of prediction.
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